Abstract
Boyer, Gordon and Watson have conjectured that an irreducible rational homology [Formula: see text]-sphere is an L-space if and only if its fundamental group is not left-orderable. Since Dehn surgeries on knots in [Formula: see text] can produce large families of L-spaces, it is natural to examine the conjecture on these [Formula: see text]-manifolds. Greene, Lewallen and Vafaee have proved that all [Formula: see text]-bridge braids are L-space knots. In this paper, we consider three families of [Formula: see text]-bridge braids. First we calculate the knot groups and peripheral subgroups. We then verify the conjecture on the three cases by applying the criterion developed by Christianson, Goluboff, Hamann and Varadaraj, when they verified the same conjecture for certain twisted torus knots and generalized the criteria due to Clay and Watson and due to Ichihara and Temma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.