Abstract
This paper presents a thermomechanical metallurgical macroscopic model for steels. The model is based on an existing model that is extended for non-isothermal behaviour in combination with phase transformations. The model and its numerical implementation in ABAQUS are described using vector notation for stress and strain tensors. Model parameters are presented for the dual phase steel DP600 and the structural steel S355. For DP600, thermomechanical model parameters, i.e. hardening and strain rate dependency, have been obtained by fitting temperature and strain rate dependent tensile tests. A metallurgical model was implemented using data obtained from phase field models for the austenite growth and continuous cooling transition diagrams for phase transformations from austenite to low temperature phases. The model is applied to welding simulations of DP600 overlap joints and S355 T joints. The final distortion is compared to experiments and it is shown that the model presented is able to reproduce the experimental results very well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.