Abstract

AimsPulsed cavitational ultrasound therapy (thombotripsy) allows the accurate fractionation of a distant thrombus. We aimed to evaluate the efficacy and safety of non‐invasive thrombotripsy using a robotic assisted and high frequency ultrasound approach to recanalize proximal deep venous thrombosis (DVT) in a swine model. MethodsOcclusive thrombosis was obtained with a dual jugular and femoral endoveinous approach. The therapeutic device was composed of a 2.25 MHz focused transducer centered by a linear ultrasound probe, and a robotic arm. The feasibility, security, and efficacy (venous channel patency) assessment after thrombotripsy was performed on 13 pigs with acute occluded DVT. To assess the mid‐term efficacy of this technique, 8 pigs were followed up for 14 days after thrombotripsy and compared with 8 control pigs. The primary efficacy endpoint was the venous patency. Safety was assessed by the search for local vessel wall injury and pulmonary embolism. ResultsWe succeeded in treating all pigs except two with no accessible femoral vein. After median treatment duration of 23 minutes of cavitation, all treated DVT were fully recanalized acutely. At 14 days, in the treated group, six of the eight pigs had a persistent patent vein and two pigs had a venous reocclusion. In the control group all pigs had a persistent venous occlusion. At sacrifice, no local vein nor arterial wall damage were observed as well as no evidence of pulmonary embolism in all pigs. ConclusionHigh frequency thrombotripsy seems to be effective and safe for non‐invasive venous recanalization of DVT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.