Abstract
Existing electric-field integral inversion methods have limited field application conditions, and they are difficult to arrange electric-field measurement points on high-span overhead lines. This paper proposes a non-intrusive voltage measurement method for overhead transmission lines based on the near-end electric-field integration method. First, the electric-field distribution under 10 kV lines is calculated by finite element simulation software. The electric-field distribution of the plumb line and the discrete integral node below the wire are analyzed. Then, based on traditional electric-field integration, a line-voltage-inversion measurement method based on near-end electric-field integration is proposed. In addition, a voltage-monitoring system based on near-end electric-field integration is constructed. Next, the numerical integration types, the number of integration nodes, and the scale coefficient of the near-end region of the inversion algorithm are optimized with the electric-field simulation data. Finally, to verify the voltage-inversion method proposed in this paper, a test platform for overhead-line voltage is constructed using a MEMS electric-field sensor. The results indicate that the voltage-inversion error is 5.75%. The research results will provide theoretical guidance for non-intrusive voltage-inversion measurement of overhead lines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.