Abstract

This work proposes an original non-intrusive approach to detect and quantify rattle noise in automotive gearboxes operating under non-stationary conditions by means of vibration or instantaneous angular speed measurements. Rattle noise is produced by vibro impacts between teeth of unloaded gears excited by the engine acyclism. It appears during acceleration or deceleration phases and its detection requires the analysis of non-stationary signals. In order to take advantage of the repetitive nature of the impacts, an angle/time cyclostationary approach is introduced. Rattle noise is thus characterized through the angle/time duality: the cyclic frequency expressed in events per revolution is directly linked to the periodicity of the impacts while their frequency content is expressed in Hertz. The proposed detection method uses an order/frequency spectral coherence and may be applied either on vibration signals or instantaneous angular speed signals. For validation purposes, a specific instrumentation of a gearbox is set up. The relative speed of the unloaded meshing gears is observed by means of optical encoders to directly detect the instants of impact which then serve as a basis for validation of the non-intrusive detection method proposed in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call