Abstract
We investigate ground-state and thermal properties of a system of non-relativistic bosons interacting through repulsive, two-body interactions in a self-consistent Gaussian mean-field approximation which consists in writing the variationally determined density operator as the most general Gaussian functional of the quantized field operators. Finite temperature results are obtained in a grand canonical framework. Contact is made with the results of Lee, Yang, and Huang in terms of particular truncations of the Gaussian approximation. The full Gaussian approximation supports a free phase or a thermodynamically unstable phase when contact forces and a standard renormalization scheme are used. When applied to a Hamiltonian with zero range forces interpreted as an effective theory with a high momentum cutoff, the full Gaussian approximation generates a quasi-particle spectrum having an energy gap, in conflict with perturbation theory results.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have