Abstract
Non-Technical Losses (NTL) represent a serious concern for electric companies. These losses are responsible for revenue losses, as well as reduced system reliability. Part of the revenue loss is charged to legal consumers, thus, causing social imbalance. NTL methods have been developed in order to reduce the impact in physical distribution systems and legal consumers. These methods can be classified as hardware-based and non-hardware-based. Hardware-based methods need an entirely new system infrastructure to be implemented, resulting in high investment and increased cost for energy companies, thus hampering implementation in poorer nations. With this in mind, this paper performs a review of non-hardware-based NTL detection methods. These methods use distribution systems and consumers’ data to detect abnormal energy consumption. They can be classified as network-based, which use network technical parameters to search for energy losses, data-based methods, which use data science and machine learning, and hybrid methods, which combine both. This paper focuses on reviewing non-hardware-based NTL detection methods, presenting a NTL detection methods overview and a literature search and analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.