Abstract

Very little is known about the blood backscattering behavior and signal statistics following flow stoppage at frequencies higher than 10 MHz. Measurements of the radio frequency (rf) signals backscattered by normal human blood (hematocrit = 40%, temperature = 37 degrees C) were performed in a tube flow model at mean frequencies varying between 10 and 58 MHz. The range of increase of the backscattered power during red blood cell (RBC) rouleau formation was close to 15 dB at 10 and 36 MHz, and dropped, for the same blood samples, below 8 dB at 58 MHz. Increasing the frequency from 10 to 58 MHz raised the slope of the power changes at the beginning of the kinetics of aggregation, and could emphasize the non-Gaussian behavior of the rf signals interpreted in terms of the K and Nakagami statistical models. At 36 and 58 MHz, significant increases of the kurtosis coefficient, and significant reductions of the Nakagami parameter were noted during the first 30 s of flow stoppage. In conclusion, increasing the transducer frequency reduced the magnitude of the backscattered power changes attributed to the phenomenon of RBC aggregation, but improved the detection of rapid growth in aggregate sizes and non-Gaussian statistical behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.