Abstract

We report experimental measurements of the second-order coherence function g^{(2)}(τ) of the light emitted by a laser-driven dense ensemble of ^{87}Rb atoms. We observe a clear departure from the Siegert relation valid for Gaussian chaotic light. Measuring intensity and first-order coherence, we conclude that the violation is not due to the emergence of a coherent field. This indicates that the light obeys non-Gaussian statistics, stemming from non-Gaussian correlations in the atomic medium. More specifically, the steady state of this driven-dissipative many-body system sustains high-order correlations in the absence of first-order coherence. These findings call for new theoretical and experimental explorations to uncover their origin, and they open new perspectives for the realization of non-Gaussian states of light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.