Abstract

The non-fragile control issue of discrete-time conic-type nonlinear Markov jump systems under deception attacks has been investigated using an event-triggered method. The nonlinear terms satisfy the conic-type nonlinear constraint condition that lies in a known hypersphere with an uncertain center is employed. The deception attack may obstruct normal communication in an effort to obtain confidential information. In addition, a non-fragile event-triggered controller is suggested to further conserve communication resources. As a stochastic process, a deception attack is manageable by the established controller. Also, by choosing an appropriate Lyapunov-Krasovskii functional, a set of necessary conditions is found in terms of linear matrix inequalities (LMIs) that guarantee mean square stability of the discrete-time conic-type nonlinear Markov jump system in the presence of deception attacks. Finally, the proposed non-fragile event-triggered control techniques is validated with a DC-DC motor application system and another numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.