Abstract

Use of low friction non-ferrous coatings for engine tribo-components exposed to boundary lubrication is becoming popular in automotive industries. The excellent tribological behaviour of some non-ferrous coatings also reduces dependence on some harmful components of lubricants. In this work, hydrogenated diamond like carbon (HDLC) and chromium nitride (CrN) coatings sliding against cast iron counterbody have been used to study the interaction with friction modifiers (Moly dimer and Moly trimer) and antiwear additive zinc dialkyldithiophosphate (ZDDP) under boundary lubrication condition. The tribological results of the non-ferrous coatings are compared with those of uncoated steel. Tribofilms are formed using a reciprocating pin-on-plate tribometer. The chemical analysis of the tribofilms has been accomplished using X-ray photoelectron spectroscopy (XPS). The XPS analysis shows that the friction modifiers form a low friction tribofilm on the non-ferrous coatings. No antiwear tribofilm derived from ZDDP was observed on the HDLC coating but a stable antiwear tribofilm was found on the CrN coating. Moly dimer together with ZDDP+Base Oil showed the lowest friction coefficient for the CrN coating while Moly trimer along with ZDDP+Base Oil gave the lowest friction for the HDLC coating. This study will investigate the generic differences between the tribofilms formed on the DLC and CrN coatings by two additive-containing oils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call