Abstract

In this paper, we report several large classes of affine varieties (over an arbitrary field K of characteristic 0) with the following property: each variety in these classes has an isomorphic copy such that the corresponding isomorphism cannot be extended to an automorphism of the ambient affine space K n . This implies, in particular, that each of these varieties has at least two inequivalent embeddings in K n . The following application of our results seems interesting: we show that lines in K 2 are distinguished among irreducible algebraic retracts by the property of having a unique embedding in K 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.