Abstract
We obtain some generalized Minkowski type integral formulas for compact Riemannian (resp., spacelike) hypersurfaces in Riemannian (resp., Lorentzian) manifolds in the presence of an arbitrary vector field that we assume to be timelike in the case where the ambient space is Lorentzian. Some of these formulas generalize existing formulas in the case of conformal and Killing vector fields. We apply these integral formulas to obtain interesting results concerning the characterization of such hypersurfaces in some particular cases such as when the ambient space is Einstein admitting an arbitrary (in particular, conformal or Killing) vector field, and when the hypersurface has a constant mean curvature.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have