Abstract

BackgroundThe Rey-Osterrieth Complex Figure Test (RCFT) is a tool to evaluate cognitive function. Despite its usefulness, its scoring criteria are as complicated as its figure, leading to a low reliability. Therefore, this study aimed to determine the feasibility of using the convolutional neural network (CNN) model based on the RCFT as a screening tool for mild cognitive impairment (MCI) and investigate the non-equivalence of sub-tasks of the RCFT.MethodsA total of 354 RCFT images (copy and recall conditions) were obtained from 103 healthy controls (HCs) and 74 patients with amnestic MCI (a-MCI). The CNN model was trained to predict MCI based on the RCFT-copy and RCFT-recall images. To evaluate the CNN model’s performance, accuracy, sensitivity, specificity, and F1-score were measured. To compare discriminative power, the area under the curve (AUC) was calculated by the receiver operating characteristic (ROC) curve analysis.ResultsThe CNN model based on the RCFT-recall was the most accurate in discriminating a-MCI (accuracy: RCFT-copy = 0.846, RCFT-recall = 0.872, MoCA-K = 0.818). Furthermore, the CNN model based on the RCFT could better discriminate MCI than the MoCA-K (AUC: RCFT-copy = 0.851, RCFT-recall = 0.88, MoCA-K = 0.848). The CNN model based on the RCFT-recall was superior to the RCFT-copy.ConclusionThese findings suggest the feasibility of using the CNN model based on the RCFT as a surrogate for a conventional screening tool for a-MCI and demonstrate the superiority of the CNN model based on the RCFT-recall to the RCFT-copy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call