Abstract

The non-equilibrium dynamics of a single cubic core–shell ferrimagnetic nanoparticle system under a time dependent oscillating magnetic field is elucidated by making use of a classical Monte Carlo simulation technique with a standard Metropolis algorithm. Many interesting and unusual thermal and magnetic behaviors are observed, for instance, the locations of dynamic phase transition points change significantly depending upon amplitude and period of the external magnetic field as well as other Hamiltonian parameters in related planes. Much effort has also been devoted to the influences of the varying shell thickness on the thermal and magnetic properties of the particle, and outstanding physical findings are reported in order to better understand the dynamic process of the studied nanoparticle system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.