Abstract

The present study illustrates the fabrication of a glucose sensing electrode based upon binary composite of copper oxide and mesoporous titanium dioxide on glassy carbon (CuO/TiO2/GCE). The X-ray diffraction, scanning electron microscopy and energy dispersive X-ray analysis evidently showed the phase pure monoclinic CuO nanoparticles and anatase TiO2. N2 adsorption-desorption analysis verified the mesoporosity in TiO2 with specific surface area greater than 105 m2 g-1. Electrochemical impedance spectroscopic analysis proved the remarkable decrease in the charge transfer resistance and facilitation of electron transfer process on the fabricated electrode. The optimum weight ratio of CuO to TiO2 was 1 : 1, and the optimum potential was 0.6 V vs. saturated calomel electrode. The chronoamperometric measurements displayed a detection limit of 1.9 μM, and sensitivities of 186.67 μA mM-1 cm-2 and 90.53 μA mM-1 cm-2 in two linear ranges of 0.05 to 5.2 mM and 5.2 to 20 mM, respectively. The amperometric analysis further showed good reproducibility, high specificity and outstanding stability of the modified electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.