Abstract
We consider uniformly parabolic equations and inequalities of second order in the non-divergence form with drift−ut+Lu=−ut+∑ijaijDiju+∑biDiu=0(≥0,≤0) in some domain Q⊂Rn+1. We prove growth theorems and the interior Harnack inequality as the main results. In this paper, we will only assume the drift b is in certain Lebesgue spaces which are critical under the parabolic scaling but not necessarily to be bounded. In the last section, some applications of the interior Harnack inequality are presented. In particular, we show there is a “universal” spectral gap for the associated elliptic operator. The counterpart for uniformly elliptic equations of second order in non-divergence form is shown in [19].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.