Abstract

Objective: A rapid, non-destructive and non-solvent raman spectroscopic method for estimation of Montelukast from tablet dosages form Methods: Quantification was carried out by measuring the intensity of analyte peak at 1440 cm-1. Each Raman spectrum corresponded to an accumulation of 4 scans with an exposure time of 5 sec for each scan with a total integration time of 20 sec.Results: The method exhibited linearity between 2 mg-24 mg show well resolve quantification From MON. The linearity equation was calculated as y = 13.036x+70.819 and the correlation coefficient was found to be 0.997 for MON. LOD (limit of detection) and LOQ(limit of quantification) values were calculated using the calibration curve slope and standard deviation of the response. The LOD (limit of detection) and LOQ (limit of quantification) values were found to be 1.71 mg and 5.13 mg respectively.Conclusion: The developed method was successfully applied for assay of montelukast in the intact formulation. The method was validated according to an international conference on harmonisation guidelines. A recent study, montelukast sodium had been analysed by the raman method, but, looking into the tremendous potential of raman spectroscopic method; it can be extended as a process analysis and technology tool in various quality checks during manufacturing of pharmaceutical products.

Highlights

  • Raman spectroscopy has been increasingly used for real-time measurements of critical process and product attributes, as it allows rapid and non-destructive measurements without sample preparations

  • MON active pharmaceutical ingredient (API) was generously gifted from Torrent Research Centre, Bhat, Ahmedabad

  • Excipients such as lactose, hydroxyl-propyl-methylcellulose (HPMC), microcrystalline cellulose (MCC), sucrose, magnesium stearate and talc were of analytical grade and purchased from Central Drug House Pvt

Read more

Summary

Introduction

Raman spectroscopy has been increasingly used for real-time measurements of critical process and product attributes, as it allows rapid and non-destructive measurements without sample preparations. The raman spectra can be recorded directly inside the container (glass vial and plastic blisters) without removing the formulation from the container. Raman spectra can be recorded with very small amount of sample and analysis time is from few seconds to few minutes. The non-destructive nature, speed of analyses and applicability of method directly on solid materials make raman spectroscopy an excellent process analytical technology (PAT) tool for in-line measurement of active pharmaceutical ingredient (API) content during continuous manufacturing of apis and other production processes [1]. Compared to conventional chromatographic and spectroscopic techniques, raman spectroscopy is a promising technology offering various rewards like a high signal to noise ratio and lower secondary fluorescence. The main drawback of this instrument is its high cost, and selection of wavelength to avoid fluorescence and thermal emission backgrounds

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.