Abstract

A milk drink flavored with date syrup produced at a lab scale level was evaluated. The production process of date syrup involves a sequence of essential unit operations, commencing with the extraction, filtration, and concentration processes from two cultivars: Sukkary and Khlass. Date syrup was then mixed with cow's and camel's milk at four percentages to form a nutritious, natural, sweet, and energy-rich milk drink. The sensory, physical, and chemical characteristics of the milk drinks flavored with date syrup were examined. The objective of this work was to measure the physiochemical properties of date fruits and milk drinks flavored with date syrup, and then to evaluate the physical properties of milk drinks utilizing non-destructive visible-near-infrared spectra (VIS-NIR). The study assessed the characteristics of the milk drink enhanced with date syrup by employing VIS-NIR spectra and utilizing a partial least-square regression (PLSR) and artificial neural network (ANN) analysis. The VIS-NIR spectra proved to be highly effective in estimating the physiochemical attributes of the flavored milk drink. The ANN model outperformed the PLSR model in this context. RMSECV is considered a more reliable indicator of a model's future predictive performance compared to RMSEC, and the R2 value ranged between 0.946 and 0.989. Consequently, non-destructive VIS-NIR technology demonstrates significant promise for accurately predicting and contributing to the entire production process of the product's properties examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call