Abstract
Chemometric models for measuring amylose content are not used in a partial least squares (PLS) regression analysis, but are necessary to improve calibration that has employed samples based on newly bred Indica, Japonica and rice by an artificial neural network (ANN). A more accurate near-infrared transmittance (NIT) calibration is needed, especially for Japonica rice that has a narrow range of amylose content. The performance of chemometric models for measuring amylose in milled rice developed using ANN and PLS was examined, and the application of spectra preprocessing for improving amylose determination was reported. All the sample sets had a wide range of sample variation for amylose content (0 to 25.9%). The japonica sample had a relatively low amylose content and a narrow sample variation for the amylose content (12.3 to 21.0%). Using multiplicative scatter correction (MSC) and the derivatives for spectra preprocessing was found to reduce the optimum number of PLS components for amylose content prediction. This spectra preprocessing reduced the optimum number of PLS components for amylose content prediction in Model B.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.