Abstract

ABSTRACT Nondestructive estimation of physicochemical properties, post-harvest physiology, and level of ripeness of fruits is essential to their automated harvesting, sorting, and handling. Recent research efforts have identified machine vision systems as a promising noninvasive nondestructive tool for exploring the relationship between physicochemical and appearance characteristics of fruits at various ripening levels. In this regard, the purpose of the current study is to provide an intelligent algorithm for estimating two physical properties including firmness, and soluble solid content (SSC), three chemical properties viz. starch, acidity, and titratable acidity (TA), as well as detection of the ripening level of apples (cultivar Red Delicious) using video processing and artificial intelligence. To this end, videos of apples in orchards at four levels of ripeness were recorded and 444 color and texture features were extracted from these samples. Five physicochemical properties including firmness, SSC, starch, acidity, and TA were measured. Using the hybrid artificial neural network-difference evolution (ANN-DE), six most effective features (one texture and five color features) were selected to estimate the physicochemical properties of apples. The physicochemical estimation was then further optimized using a hybrid multilayer perceptron artificial neural network-cultural algorithm (ANN-CA). The results showed that the coefficient of determinations (R2) related to the prediction models for the physicochemical properties were in excess of 0.92. Additionally, the ripeness level of apples was estimated based on physicochemical properties using a hybrid multilayer perceptron artificial neural network-harmonic search algorithm (ANN-HS) classifier. The developed machine vision system examined ripeness levels of 1356 apples in natural orchard environments and achieved a correct classification rate (CCR) of 97.86%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.