Abstract
In this work, the nano-textured surface of a GaN-based vertical light emitting diode (VLED) is characterized using a unified framework of non-destructive techniques (NDT) incorporating scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, Photoluminescence (PL), and X-ray diffraction (XRD) to optimize the light output efficiency. The surface roughness of ∼300 nm is revealed by AFM. Compressive stress-state of 0.667 GPa in the GaN surface is indicated by the E2(high) and A1(LO) phonon peak values at 569 cm−1 and 736 cm−1, respectively, in Raman spectrum and the wavelength at 442 nm rather 450 nm in PL spectrum. Without damaging the LED, surface analysis by NDT helps to advance the understanding of the optimized angular light redistribution subject to the high-roughness surface and the negative impacts of the stress induced at the top GaN layer, which leads to the optical efficiency degradation of the VLED. Furthermore, the impact of texturing on underneath n-GaN and MQWs layers is investigated via SEM-based transmission Kikuchi diffraction (TKD) and aberration-corrected scanning transmission electron microscopy (AC-STEM) and revealed a smooth surface morphology and good crystalline quality, indicating that the etch-induced damage by texture engineering does not impair the active region of the VLED. Accordingly, prospective optimizations are suggested in the context of surface engineering for light enhancement in VLEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.