Abstract

Abstract. In this work, we proposed the hybrid non-convex regularizers for Poisson noise removal on medical images. The model is built by a combination of non-convex total variation and non-convex fractional total variation. The proposed model allows for avoiding the annoying staircase artifacts and obtaining the reconstruction results with sharp and neat edges during the noise removal process. For handling the minimization problem, we employ the alternating minimization method associated with the iteratively reweighted l1 algorithm. Numerical experiments illustrate the efficiency of the proposed model and corresponding algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.