Abstract

Several methods based on Total Variation (TV) have been proposed for Hyperspectral Image (HSI) denoising. However, the TV terms of these methods just use various l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> norms and penalize image gradient magnitudes, having a negative influence on the preprocessing of HSI denoising and further HSI classification task. In this paper, a novel l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> Total Variation (l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV) is first introduced and analyzed for the HSI noise removal framework to preserve more information for classification. We propose a novel Tensor low-rank constraint and l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> Total Variation (TLR-l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV) model in this paper. l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV directly controls the number of non-zero gradients and focuses on recovering the sharp image edges. The spectral-spatial information among all bands is exploited uniformly for removing mixed noise, which facilitates the subsequent classification after denoising. Including the Weighted Sum of Weighted Nuclear Norm (WSWNN) and the Weighted Sum of Weighted Tensor Nuclear Norm (WSWTNN), we propose two TLR-l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV-based algorithms, namely WSWNN-l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV and WSWTNN-l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV. The Alternating Direction Method of Multipliers (ADMM) and the Augmented Lagrange Multiplier (ALM) are employed to solve the l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV model and TLR-l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV model, respectively. In both simulated and real data, the proposed models achieve superior performances in mixed noise removal of HSI. Especially, HSI classification accuracy is improved more effectively after denoising by the proposed TLR-l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0</sub> TV method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.