Abstract

Joining of metal structures, or welding, plays a critical role in our modern world, where safety critical welds of thin sheet metals are used in pipework, nuclear cannisters and aircraft ducting among others. A potential failure in such welds could prove to be catastrophic, hence the need for thorough inspection and testing. With the ever-increasing automation of welding operations, manually deployed Non-destructive Evaluation (NDE) has become a major bottleneck in the supply chain. This paper introduces for the first time, non-contact gas-coupled ultrasonic sensors deployed in-process during weld deposition, for screening of weld penetration directly at the point of manufacture. 3 mm thick mild steel plates were butt-welded together using Gas Tungsten Arc Welding (GTAW) while non-contact air-coupled ultrasonic transducers, generating surface guided Lamb waves, performed inspection screening of the weld seam. Optimised Signal-to-Noise Ratio (SNR) was achieved through a customised acoustic matching layer, low-noise amplifiers and real-time signal processing. By performing multiple trials at varying levels of welding input power (0.59 kJ/mm to 1.03 kJ/mm), it was demonstrated that the amplitude of the through transmission A0 Lamb wave is correlated to the Weld Penetration Depth (WPD) and can be used for on-line weld quality screening. Advantages of the outlined method include higher production rates, reduced levels of scrap and higher production quality in regards to thin metal sheet welded components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.