Abstract
Relying on surpassing high theoretical capacity (3,865 mAh/g) and the lowest relative electrode potential (0 V vs. metallic Li), lithium metal batteries (LMBs) have been regarded as the “holy grail” of next-generation energy storage technology. Whereases, the instability of pristine solid electrolyte interphase (SEI) layers and the disorderly growth of lithium dendrites are still significant challenges to the commercialisation of LMBs. In this study, a novel approach is introduced to homogenise Li deposition by incorporating an environmentally friendly electrolyte additive, gamma-cyclodextrin (γ-CD), in ether-based electrolytes. Through host-guest interactions, γ-CD additives not only form inclusion complexes to improve Li+ transference number to 0.86 but also encapsulate TFSI- anions and other solvent molecules within the “cavity effect” to relieve unfavourable solvent effect. Electrochemical characterisations demonstrate that introducing 1 wt% γ-CD elevates the oxidation decomposition voltage of ether electrolytes to 4.15 V, thereby inhibiting the decomposition of ether electrolytes and reducing the fracture of SEI layers. According to reduce the nucleate potential, the Li//Cu half battery exhibits improved stability for 100 cycles, with an improved average Coulombic efficiency (CE) maintained above 98.4 %. Even if applied at high current densities of 5.0 mA cm−2 for a capacity of 1.0 mAh cm−2, the Li//Li symmetric battery can cycle for over 800 h, and the Li//Li4Ti5O12 (LTO) full battery retains 98.8 % of the initial capacity after 1,400 cycles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.