Abstract

Accurate modelling of nonadiabatic transitions and electron–phonon interactions in extended systems is essential for understanding the charge and energy transfer in photovoltaic and photocatalytic materials. The extensive computational costs of the advanced excited state methods have stimulated the development of many approximations to study the nonadiabatic molecular dynamics (NA-MD) in solid-state and molecular materials. In this work, we present a novel ▵SCF-NA-MD methodology that aims to account for electron–hole interactions and electron–phonon back-reaction critical in modelling photoinduced nuclear dynamics. The excited states dynamics is described using the delta self-consistent field (▵SCF) technique within the density functional formalism and the trajectory surface hopping. The technique is implemented in the open-source Libra-X package freely available on the Internet (https://github.com/Quantum-Dynamics-Hub/Libra-X). This work illustrates the general utility of the developed ▵SCF-NA-MD methodology by characterizing the excited state energies and lifetimes, reorganization energies, photoisomerization quantum yields, and by providing the mechanistic details of reactive processes in a number of organic molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.