Abstract
In this work, we report for the first time that thiophenol-substituted naphthalimide can achieve thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP) simultaneously through non-conjugated flexible connection. Herein, we explain that the enhancement of intersystem crossing (ISC) between the singlet excited state and triplet excited states in NISPh is mainly caused by the non-adiabatic conformation distortion charge transfer (CDCT) of the excited states. More precisely, CDCT results in the conformation matching and energy barrier decrease between the excited states. In addition, the electronic and vibration coupling is further enhanced in NISPh. Our work substantiates a rational design strategy for the development of simple purely organic materials to achieve dual emission of TADF and RTP.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have