Abstract

AbstractA non-adaptive controller for a class of vehicles is proposed in this paper. The velocity tracking controller is expressed in terms of the transformed equations of motion in which the obtained inertia matrix is diagonal. The control algorithm takes into account the dynamics of the system, which is included into the velocity gain matrix, and it can be applied for fully actuated vehicles. The considered class of systems includes underwater vehicles, fully actuated hovercrafts, and indoor airship moving with low velocity (below 3 m/s) and under assumption that the external disturbances are weak. The stability of the system under the designed controller is demonstrated by means of a Lyapunov-based argument. Some advantages arising from the use of the controller as well as the robustness to parameters uncertainty are also considered. The performance of the proposed controller is validated via simulation on a 6 DOF robotic indoor airship as well as for underwater vehicle model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call