Abstract

Here, we introduce and apply non-Abelian tensor Berry connections to topological phases in multiband systems. These gauge connections behave as non-Abelian antisymmetric tensor gauge fields in momentum space and naturally generalize Abelian tensor Berry connections and ordinary non-Abelian (vector) Berry connections. We build these novel gauge fields from momentum-space Higgs fields, which emerge from the degenerate band structure of multiband models. First, we show that the conventional topological invariants of two-dimensional topological insulators and three-dimensional Dirac semimetals can be derived from the winding number associated with the Higgs field. Second, through the non-Abelian tensor Berry connections we construct higher-dimensional Berry-Zak phases and show their role in the topological characterization of several gapped and gapless systems, ranging from two-dimensional Euler insulators to four-dimensional Dirac semimetals. Importantly, through our new theoretical formalism, we identify and characterize a novel class of models that support space-time inversion and chiral symmetries. Our work provides a unifying framework for different multiband topological systems and sheds new light on the emergence of non-Abelian gauge fields in condensed matter physics, with direct implications on the search for novel topological phases in solid-state and synthetic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.