Abstract

It is proposed that high-speed universal quantum gates can be realized by using non-Abelian holonomic transformation. A cyclic evolution path which brings the system periodically back to a degenerate qubit subspace is crucial to holonomic quantum computing. The cyclic nature and the resulting gate operations are fully dependent on the precise control of driving parameters, such as the modulated envelop function of Rabi frequency and the control phases. We investigate the effects of fluctuations in these driving parameters on the transformation fidelity of a universal set of single-qubit quantum gates. We compare the damage effects from different noise sources and determine the "sweet spots" in the driving parameter space. The nonadiabatic non-Abelian quantum gate is found to be more susceptible to classical noises on the envelop function than that on the control phases. We also extend our study to a two-qubit quantum gate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.