Abstract
To construct a bleeding events prediction model of nonvalvular atrial fibrillation (NVAF) patients receiving rivaroxaban. We conducted a retrospective cohort study in patients with NVAF who received rivaroxaban from June 2017 to March 2019. Demographic information and clinical characteristics were obtained from the electronic medical system. Univariate analysis was used to find the primary predictive factors of bleeding events in patients receiving rivaroxaban. Multiple analysis was conducted to screen the primary independent predictive factors selected from the univariate analysis. Finally, the independent influencing factors were applied to build a prediction model by using R software; then, a nomogram was established according to the selected variables visually, and the sensitivity and specificity of the model was evaluated. Twelve primary predictive factors were selected by univariate analysis from 46 variables, and multivariate analysis showed that older age, higher prothrombin time (PT) values, history of heart failure and stroke were independent risk factors of bleeding events. The area under curve (AUC) for this novel nomogram model was 0.828 (95% CI: 0.763-0.894). The mean AUC over 10-fold stratified cross-validation was 0.787, and subgroup analysis validation also showed a satisfied AUC. In addition, the decision curve analysis showed that the PT in combination with CHA2DS2-VASc and HASBLED was more practical and accurate for predicting bleeding events than using CHA2DS2-VASc and HASBLED alone. PT in combination with CHA2DS2-VASc and HASBLED could be considered as a more practical and accurate method for predicting bleeding events in patients taking rivaroxaban.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have