Abstract
Multi-access mobile edge computing (MEC), which enables mobile users (MUs) to offload their computation-workloads to the computation-servers located at the edge of cellular networks via multi-access radio access, has been considered as a promising technique to address the explosively growing computation-intensive applications in mobile Internet services. In this paper, by exploiting non-orthogonal multiple access (NOMA) for improving the efficiency of multi-access radio transmission, we study the NOMA-enabled multi-access MEC. We aim at minimizing the overall delay of the MUs for finishing their computation requirements, by jointly optimizing the MUs’ offloaded workloads and the NOMA transmission-time. Despite the non-convexity of the formulated joint optimization problem, we propose efficient algorithms to find the optimal offloading solution. For the single-MU case, we exploit the layered structure of the problem and propose an efficient layered algorithm to find the MU's optimal offloading solution that minimizes its overall delay. For the multi-MU case, we propose a distributed algorithm (in which the MUs individually optimize their respective offloaded workloads) to determine the optimal offloading solution for minimizing the sum of all MUs’ overall delay. Extensive numerical results have been provided to validate the effectiveness of our proposed algorithms and the performance advantage of our NOMA-enabled multi-access MEC in comparison with conventional orthogonal multiple access enabled multi-access MEC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have