Abstract

Wave propagation in ducts is a rich topic that is important to consider in the design of turbomachinery components for aero-engine applications. In order to describe how the waves propagate inside a duct, an eigenmode decomposition of the equations modeling the fluid problem can be performed. The resulting eigenmodes may be used to construct nonreflecting boundary conditions, to investigate flow physics, or for post-processing numerical simulations to track the evolution of modal content through a computational domain. In the present work, an open-source Python tool, called noisyduck, was developed to compute eigenmode decompositions of the linearized Euler equations that model linear wave propagation in a duct with constant cross-section. The numerical method is verified against analytical solutions and reported results from the literature for uniform axial flow and swirling flow in an annulus. The noisyduck tool is made available as a public resource with the intent of reducing duplicated research efforts, and clarifying equation sets and formulations with respect to the literature in the area of eigenmode decompositions for problems in duct acoustics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.