Abstract

Coherent population trapping is a well-known quantum phenomenon in a driven Λ system, with many applications across quantum optics. However, when a stochastic bath is present in addition to vacuum noise, the observed trapping is no longer perfect. Here we derive a time-convolutionless master equation describing the equilibration of the Λ system in the presence of additional temporally correlated classical noise, with an unknown decay parameter. Our simulations show a one-to-one correspondence between the decay parameter and the depth of the characteristic dip in the photoluminescence spectrum, thereby enabling the unknown parameter to be estimated from the observed spectra. We apply our analysis to the problem of qubit state initialization in a Λ system via dark states and show how the stochastic bath affects the fidelity of such initialization as a function of the desired dark-state amplitudes. We show that an optimum choice of Rabi frequencies is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.