Abstract
We prove that the Poisson Boolean model, also known as the Gilbert disc model, is noise sensitive at criticality. This is the first such result for a Continuum Percolation model, and the first which involves a percolation model with critical probability p c ≠ 1/2. Our proof uses a version of the Benjamini-Kalai-Schramm Theorem for biased product measures. A quantitative version of this result was recently proved by Keller and Kindler. We give a simple deduction of the non-quantitative result from the unbiased version. We also develop a quite general method of approximating Continuum Percolation models by discrete models with p c bounded away from zero; this method is based on an extremal result on non-uniform hypergraphs.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have