Abstract
[abstFig src='/00290001/03.jpg' width='300' text='Sound source localization and problem' ] We focus on the problem of localizing soft/weak voices recorded by small humanoid robots, such as NAO. Sound source localization (SSL) for such robots requires fast processing and noise robustness owing to the restricted resources and the internal noise close to the microphones. Multiple signal classification using generalized eigenvalue decomposition (GEVD-MUSIC) is a promising method for SSL. It achieves noise robustness by whitening robot internal noise using prior noise information. However, whitening increases the computational cost and creates a direction-dependent bias in the localization score, which degrades the localization accuracy. We have thus developed a new implementation of GEVD-MUSIC based on steering vector transformation (TSV-MUSIC). The application of a transformation equivalent to whitening to steering vectors in advance reduces the real-time computational cost of TSV-MUSIC. Moreover, normalization of the transformed vectors cancels the direction-dependent bias and improves the localization accuracy. Experiments using simulated data showed that TSV-MUSIC had the highest accuracy of the methods tested. An experiment using real recoded data showed that TSV-MUSIC outperformed GEVD-MUSIC and other MUSIC methods in terms of localization by about 4 points under low signal-to-noise-ratio conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have