Abstract
Hyperspectral image (HSI) classification is an important topic in remote sensing. In this paper, we improve the principal component analysis (PCA)-based edge preserving features (EPFs) for HSI classification. We select to use minimum noise fraction (MNF) instead of PCA to reduce the dimensionality of the hyperspectral data cube to be classified. We keep all the rest steps from the PCA-based EPFs for HSI classification. Since MNF can preserve fine features of a HSI data cube better than PCA, our new method can outperform PCA-EPFs for HSI classification significantly. Experimental results show that our new method performs better than the PCA-based EPFs under such noisy environment as Gaussian white noise and shot noise. In addition, our MNF+EPFs outperform the PCA+EPFs even when no noise is added to the HSI data cubes for most testing cases, which is very desirable in remote sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.