Abstract

A passive Fourier transform infrared (FTIR) spectrometer is an instrument that can detect and identify chemical contaminants. An FTIR spectrometer exploits the infrared radiation of the surrounding terrain as a light source and receives a mixed signal of background signal, gas signal, and noise. The performance of most detection algorithms for detecting gaseous plumes, such as the normalized matched filter (NMF) and adaptive subspace detector (ASD), deteriorates due to the noise generated by an FTIR spectrometer. In this paper, a noise reduction algorithm based on the maximum noise fraction (MNF) transform to improve the performance of hazardous gas detection algorithms is proposed. We apply the MNF transform to the measured spectra and remove the high noise fraction component. Then the noise-reduced spectra are restored by conducting the inverse MNF transform. The experimental results show that the proposed algorithm reduces the noise and enhances the gas detection performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.