Abstract
Distance measuring systems using random noise as the modulating function are described. The distance measurement is accomplished by correlating the modulation on the transmitted and received signals. The spectrum of the modulating function determines the way in which this correlation, and hence system output, depends on distance to a reflecting target. Physical realizability of filters limits the output-to-distance behavior of linear, noise-modulated systems. Theoretically, either amplitude or frequency modulation can be used, but the latter has distinct advantages in overcoming incidental spurious signals generated within the system. Actual multiplication of signals is avoided through use of a conventional mixer. The resulting system is similar to existing altimeters but is free of the ambiguities inherent in periodically modulated systems, avoids the "fixed error," and is capable of measuring distances down to a few feet. This makes it particularly suited for use as an altimeter in blind landing systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.