Abstract

Abstract Near-surface velocity variations are the main cause of seismic scattering in exploration seismology. Many studies create the near-surface heterogeneity as velocity models that have random velocity distribution, random objects, or irregular subsurface topography to study and mitigate the resultant scattering effects of the near-surface layer. Von Kármán (self-similar) method is a known method in the literatures for modeling heterogeneous earth in a statistical way. This research modifies the self-similar method, and throughout the work, it has proven that the self-similar provides a robust method for generating realistic near-surface velocity models with different spatial velocity distributions. This study creates four-velocity models with simple subsurface layering and structure, three of which include a near-surface layer in three different degrees of velocity heterogeneity. Synthetic acoustic seismic reflections are produced for the four-velocity models to investigate the resultant scattering effects of the near-surface velocity heterogeneity on the quality of seismic waveform coherency. Spectacular negative observations are witnessed of the near-surface layer involvement to the quality of seismic reflection coherency that increases as velocity dramatically varies. Subtracting the scattering noise, which is modeled using an exact heterogeneous model, enhances seismic reflection coherency for the subsurface layers, but waveforms that are affected by scattering must be reconstructed for true amplitude and seismic waveform analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call