Abstract

The generalised multilevel Landau–Zener problem is solved by applying the density matrix technique within the framework of nonstationary perturbation theory. The exact survival probability is achieved as a proof of the Brundobler–Elzer hypothesis (Brundobler and Elzer (1993) [38]). The effect of classical Gaussian noise is investigated by averaging the solution over the noise realisation. A generalised formula for slow noise-induced transition probability is obtained and found to agree exactly with all known results. Exact results are reported for the Demkov–Osherov model in the slow and fast noise limits. Thermal transition probabilities are obtained via the activation Arrhenius law and observed to tailor a qubit from thermal decoherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.