Abstract

Measurement-Based Quantum Computing (MBQC) is an alternative to the quantum circuit model, whereby the computation proceeds via measurements on an entangled resource state. Noise processes are a major experimental challenge to the construction of a quantum computer. Here, we investigate how noise processes affecting physical states affect the performed computation by considering MBQC on a one-dimensional cluster state. This allows us to break down the computation in a sequence of building blocks and map physical errors to logical errors. Next, we extend the Matrix Product State construction to mixed states (which is known as Matrix Product Operators) and once again map the effect of physical noise to logical noise acting within the correlation space. This approach allows us to consider more general errors than the conventional Pauli errors, and could be used in order to simulate noisy quantum computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.