Abstract

The noise characteristics of a stacked CMOS active pixel sensor (SCAPS) for incident charged particles have been analyzed under 4.5 keV Si + ion irradiation. The source of SCAPS dark current was found to change from thermal to electron leakage with decreasing device temperature. Leakage current at charge integration part in a pixel has been reduced to 0.1 electrons s −1 at 77 K. The incident ion signals are computed by subtracting reset frame values from each frame using a non-destructive readout operation. With increase of irradiated ions, the dominant noise source changed from read noise, and shot noise from the incident ions, to signal frame fixed-pattern noise from variations in sensitivity between pixels. Pixel read noise is equivalent to ten incident ions. The charge of an incident ion is converted to 1.5 electrons in the pixel capacitor. Shot noise corresponds to the statistical fluctuation of incident ions. Signal frame fixed-pattern noise is 0.7% of the signal. By comparing full well conditions to noise floor, a dynamic range of 80 dB is achieved. SCPAS is useful as a two-dimensional detector for microanalyses such as stigmatic secondary ion mass spectrometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.