Abstract

Noise has been recognized as an important factor in a range of physical and informational systems, including the elementary physics of life, such as cellular developments and functions. Here we use a stochastic differential equation to study the effects of noise on a typical system of antagonist actors, the Schlögl model. The phenomena of noise-induced bifurcation are observed. Detailed analysis demonstrates that the region revealing bistability can be modulated by the intensity of noise. This suggests that an external noise source can serve as an engineering tool for controlling antagonist inter-reacting systems in general, and in particular, for manipulating biochemical pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call