Abstract

Single-phase brushless DC (BLDC) drives are a cost-effective alternative for three-phase sub-fractional horsepower drives in automotive auxiliary applications. Inherent features of single-phase permanent magnet machines, such as high cogging torque and torque ripple, can, however, make them more audible than their three-phase counterparts. As some of these auxiliary drives are close to the passengers, where even a small amount of noise can be disturbing, the investigation into noise sources is essential to further address this challenge. In this paper, the dominant noise and vibration characteristics of single-phase BLDC machines are investigated for two different stator structures, i.e., salient-pole and claw-pole, and compared. Magnetic force density waves and finite element (FE) analyses are performed to analyze the electromagnetic forces resulting from the open-circuit condition as well as different switching strategies in the load condition. Structural analyses show that due to the mechanical structure’s lower stiffness and natural frequencies in the audible range, the example case machine with the claw-pole stator develops higher structure- and air-borne noise than the machine with the salient-pole stator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.