Abstract

The eigenvectors for graph 1-Laplacian possess some sort of localization property: On one hand, the characteristic function on any nodal domain of an eigenvector is again an eigenvector with the same eigenvalue; on the other hand, one can pack up an eigenvector for a new graph by several fundamental eigencomponents and modules with the same eigenvalue via few special techniques. The Courant nodal domain theorem for graphs is extended to graph 1-Laplacian for strong nodal domains, but for weak nodal domains it is false. The notion of algebraic multiplicity is introduced in order to provide a more precise estimate of the number of independent eigenvectors. A positive answer is given to a question raised in Chang (2016) [3], to confirm that the critical values obtained by the minimax principle may not cover all eigenvalues of graph 1-Laplacian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.