Abstract

Tamarix chinensis Lour., which is common throughout the southwestern USA, is a phreatophytic riparian tree capable of high water use. We investigated temporal congruence between daily total evapotranspiration (E) estimated from stem sap flux (J(s)) measurements (E(sf)) and eddy covariance (E(cv)), both seasonally and immediately following rain events, and used measurements of leaf-level gas exchange, stem water content and diurnal changes in leaf water potential to track drivers of transpiration. In one study, conducted near the end of the growing season in a pure T. chinensis stand adjacent to the Rio Grande River in central New Mexico, nighttime E(sf) as a proportion of daily E(sf) increased with water availability to a peak of 36.6%. High nighttime E(sf) was associated with underestimates of nighttime E(cv). A second study, conducted in west Texas, beside the Pecos River, investigated the relationships between nighttime J(s) and stem tissue rehydration, on the one hand, and nighttime E, on the other hand. Leaf gas exchange measurements and stomatal impressions suggested that nighttime J(s) was primarily attributed to concurrent transpiration, although there were small overnight changes in stem water content. Both vapor pressure deficit and soil water availability were positively related to nighttime J(s), especially following rainfall events. Thus, both studies indicate that T. chinensis can transpire large amounts at night, a fact that must be considered when attempting to quantify E either by eddy covariance or sap flux methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call