Abstract

Comprehensive observations of the nocturnal atmospheric oxidation of NO3 and N2O5 were conducted at a suburban site in Changzhou in the YRD using cavity ring-down spectroscopy (CRDS) from 27 May to 24 June, 2019. High concentrations of NO3 precursors were observed, and the nocturnal production rate of NO3 was determined to be 1.7 ± 1.2 ppbv/hr. However, the nighttime NO3 and N2O5 concentrations were relatively low, with maximum values of 17.7 and 304.7 pptv, respectively, illustrating the rapid loss of NO3 and N2O5. It was found that NO3 dominated the nighttime atmospheric oxidation, accounting for 50.7%, while O3 and OH only contributed 34.1% and 15.2%, respectively. For the reactions of NO3 with volatile organic compounds (VOCs), styrene was found to account for 60.3%, highlighting its dominant role in the NO3 reactivity. In general, the contributions of the reactions between NO3 and VOCs and the N2O5 uptake to NO3 loss were found to be about 39.5% and 60.5%, respectively, indicating that N2O5 uptake also played an important role in the loss of NO3 and N2O5, especially under the high humidity conditions in China. The formation of nitrate at night mainly originated from N2O5 uptake, and the maximum production rate of NO3− reached 6.5 ppbv/hr. The average NOx consumption rate via NO3 and N2O5 chemistry was found to be 0.4 ppbv/h, accounting for 47.9% of the total NOx removal. The predominant roles of NO3 and N2O5 in nitrate formation and NOx removal in the YRD region was highlighted in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.