Abstract

Graphitic carbon nitride (g-C3N4) is well recognised as one of the most promising materials for photocatalytic activities such as environmental remediation via organic pollution elimination. New methods of nanoscale structure design introduce tunable electrical characteristics and broaden their use as visible light-induced photocatalysts. This paper summarises the most recent developments in the design ofg-C3N4 with element doping. Various methods of introducing metal and nonmetal elements into g-C3N4 have been investigated in order to simultaneously tune the material's textural and electronic properties to improve its response to the entire visible light range, facilitate charge separation, and extend charge carrier lifetime. The degradation of antibiotics is one of the application domains of such doped g-C3N4. We expect that this research will provide fresh insights into clear design methods for efficient photocatalysts that will solve environmental challenges in a sustainable manner. Finally, the problems and potential associated with g-C3N4-based nanomaterials are discussed. This review is expected to encourage the ongoing development of g-C3N4-based materials for greater efficiency in photocatalytic antibiotic degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.